Determination of Scale-Invariant Equations of State without Fitting Parameters: Application to the Two- Dimensional Bose Gas Across the Berezinskii-Kosterlitz-
نویسندگان
چکیده
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
منابع مشابه
Determination of scale-invariant equations of state without fitting parameters: application to the two-dimensional Bose gas across the Berezinskii-Kosterlitz-Thouless transition.
We present a general "fit-free" method for measuring the equation of state (EoS) of a scale-invariant gas. This method, which is inspired from the procedure introduced by Ku et al. [Science 335, 563 (2012)] for the unitary three-dimensional Fermi gas, provides a general formalism which can be readily applied to any quantum gas in a known trapping potential, in the frame of the local density app...
متن کاملConnecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas.
We study the critical point for the emergence of coherence in a harmonically trapped two-dimensional Bose gas with tunable interactions. Over a wide range of interaction strengths we find excellent agreement with the classical-field predictions for the critical point of the Berezinskii-Kosterlitz-Thouless (BKT) superfluid transition. This allows us to quantitatively show, without any free param...
متن کاملIntroduction of a Novel Two-Dimensional Equation of State to Predict Gas Equilibrium Adsorption in Highly-Nonideal Systems
Abstract The accurate calculations of adsorption equilibrium for multicomponent gas systems are of great importance in many applications. In this paper, five two-dimensional equations of state 2D-EOS, i.e. Van der Waals, Eyring, Zhou-Ghasem-Robinson, Soave-Redlich-Kwong and Peng-Robinson, were examined to find out their abilities to predict adsorption equilibrium for pure and multi-component ga...
متن کاملSuperfluid transition of homogeneous and trapped two-dimensional Bose gases.
Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase wit...
متن کاملThe trapped two-dimensional Bose gas: from Bose–Einstein condensation to Berezinskii–Kosterlitz–Thouless physics
We analyze the results of a recent experiment with bosonic rubidium atoms harmonically confined in a quasi-two-dimensional (2D) geometry. In this experiment a well-defined critical point was identified, which separates the high-temperature normal state characterized by a single component density distribution, and the low-temperature state characterized by a bimodal density distribution and the ...
متن کامل